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Separsble coordinate systems for the Hamilton-Jacobi, 
@+Gordon and wave equations in curved spaces 

Werner Die& 
physikalisches Institut der Universi~t, 8700 Wiinburg, Rontgenring 8, Federal Republic 
of Germany 

Received 18 August 1975, in final form 24 October 1975 

Attstract, There are exactly two types of separable coordinates for the Hamilton-Jacobi, 
Klein-Gordon and wave equations. One type can be reduced to separable coordinates 
adapted to a (conformal) Killing vector, the other type to orthogonal coordinates adapted to 
eigenvectors of a (conformal) Killing tensor. We derive a canonical form of the metric 
tensor which is a necessary and sufFcient condition for the existence of a separable 
coordinate system for the Hamilton-Jacobi equation. For the Klein-Gordon equation the 
metric is further restricted by a condition on the Ricci tensor. We give also sufficient 
conditions for the existence of separable coordinates in terms of linear or quadratic 
constants of motion. 

hy authors have studied coordinate systems in which the Hamilton-Jacobi equation 
Wtes completely. This problem was first investigated by Liouville and later by 
%1(1890,1891, 1893), Levi-Civith (19041, DaiI’Aqua (1908,1912) and Bugatti 
(1911). They gave metria in which the Hamilton-Jacobi equation separates com- 
hlY and found connexions between separable systems for the Hamilton-Jacobi 
Whnandthe existence of constants of motion. Stackel was the first who pointed out 
th quadratic constants of motion are related to orthogonal separable systems. 
%n (1927) and Eisenhart (1934) discussed the complete separability of the 
glemGordon and wave equations in spaces admitting a complete set of mutually 
@%Ond families of hypersurfaces. They found the same results as Stackel for the 
MtOWJacobi equation and additional conditions for the Ricci tensor. Havas (1975) 

be most general metric admitting coordinate systems in which the Hamilton- 
bi and Schrodinger equations separate completely. 

Anewer motivation for relativists to investigate separation problems is the work 
Qoeby&kr (1968) concerning the separability in some type (22) space-times, and 
apzeiallY the beautiful paper of Woodhouse (1975). He shows the relationship 
henmi% tensors and separable systems for the Hamilton-Jacobi equation: there 

two types of separable systems for the (massless) Hamilton-Jacobi 
whose separable coordinate is adapted either to a (conformal) Killing vector 

“aeigenvector of a (conformal) Killing tensor. 
In& Paper we extend Woodhouse’s results to the Klein-Gordon (wave) equation 

bdshopc that there are again only these two types of separable systems, such that the 

519 



520 W Dietz 

separable coordinate is again adapted either to a Killing vector (generator of a 
homothety) or to an eigenvector of a (conformal) Killing tensor. 

We find canonical metric tensors and additional conditions for the mnapadi?p 
~ c c i  tensor in such a way that at least one separable coordinate exists. 

Finally, we derive sufficient conditions for the existence of a separ&1esytemfmh 
Uein-Gordon or wave equations in terms of constants of motion. 

2. Definitions and conventions 

(M, g) is a smooth n dimensional Riemannian or pseudo-Riemannian manifold witha 
positive definite or Lorentz metric. A set of local coordinates is denoted by (f). 
Except where otherwise indicated, Latin indices a, b, c run from 1 to n, Greek 

p, 7 from 2 to n. The determinant of the covariant metric tensor is denoted byg. & 
Hamilton-Jacohi equation (HJ) is given by 

g* aas abS-m2= 0 (1) 
the Klein-Gordon equation (KG) by 

which is called the wave equation (WE) if and only if m = 0. 
In the following we investigate the conditions for the existence of a coordinate 

system (x") in which the HJ or KG and WE separate with respect to xl, that is to say the 
ansatz 

Sn") = Sl(X')+ S2(X") for S (3) 

W(x") = cp(x')x(x") for W (4 
or 

inserted into (1) or (2) causes those equations, after multiplication with a 
function U = U(x"), to split up into a partial differential equation in x a  for SdX") or 
x(x") ,  and an ordinary differential equation in x1 for Sl(x') or @(XI). A n e w  
condition for the separability of the HJ, KG and WE with respect to X '  is that * ' T h e  coefficient Ugll of a's, a's, pr a, a,x is a function of x1 alone, say f ( x  1. 
transformation xl+ f'(x') =I" f"'(y) dy gives, after dropping the bar, (g " fo )  

U = (gll)-l 

and we obtain for (1) and (2) multiplied by U 

m2 ab - gll  a,s abs -- - o 
g g'l- 

and 
1 gab (0 

menti& 

v r.laa ab*+*-' 
8 

In the following, we assume that the transformation x1 + S1(x'), previously 
is performed. 
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is a separable system for the w, KG and WE if the corresponding equation 
lGpnratfa&respect to xl. We call x1 the separable coordinate. A11 considerations are 
did in that the set of local solutions of the differential equations is not restricted 
blatifications or boundary conditions. This enables us to consider S,, S, or (01, ,y and 
ukimtions as independent functions. 

some definitions concerning Killing tensors and constants of motions are needed 
(see&roch 1970, Sommers 1973, Woodhouse 1975). 
WNijenhuis bracket operation is defined by 

[ABjd".'~p+4+' := p ~ b ( " ~ . . . a P - l ~ ~ a p . . . a  p + q + - l ) _ q B b ( a ,  . . . a q - l v ~ a q . . - a p + 9 + l )  (7) 

&re A"..' and B""" are symmetric contravariant tensor fields of order p and q 
@ely and V is any torsion-free connexion on (M, g ) .  

we attach to each symmetric contravariant tensor field A". . . '  a function 
~ ( x ' , p , )  := A"".'p,. . . pb  on the covariant tangent bundle T*M where p" is the 
taagenton the curve x" = x a ( s ) .  The Poisson bracket of two functions on T*M is 

hNijenhuis bracket and the Poisson bracket are closely relatea. 

@sihn 1. Let A".'. '  and B""'" be symmetric contravariant tensor fields and 
p..d-[A - g ] a . .  . d . Then the associated functions fulfil C={A,  B).  

'Ibisis easy to prove by direct computation from (7). The symmetric tensor c" ' ' .  is a 
m?formal Killing tensor if a tensor field B" ' . ' exists such that 

[c, g- ja . .  . d =  ~ ( a . .  . b cd)  
g .  

wdh proposition 1 ,  we obtain {Cy H}- H where H = $gabPapb denotes the Hamilto- 
h. If a symmetric tensor K"." satisfies 

[K, g ] " ' . - d = O  

i h i l ed  a Killing tensor. Then {K,  H> = 0. 

%".y 1. The metria gab and gab are conformal: gab = w&,. K is a constant of 
Wm with respect to gab. If H is the Hamiltonian of gab then {K, H}  - H. 

hf- The Hamiltonians H of gab and fi of gab are related by H = m. Therefore 
(K,H)=i& w)fi+ W{K, @={K, w)A= W-'{K, WH-H. 

ZIisQkd a conformal Killing vector if and only if 

[t, g1& = f g a b  (8) 

labfZn- 'Vata .  Iff = constant, 5" generates a homothety. Iff = 0,t" defines a Killing 
lfwechoose the parameter c on the integral curves (orbits) generated by 5" as 

is adapted to the (conformal) Killing vector and we obtain 

a 
atgab = 0 
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if 6" is a Killing vector, and 
a a 
---(Vgd)=O with f = - h ( V [  

at 

if tu is a conformal Killing vector. A quadratic (conformal) Killing tensor a 
(conformal) Killing tensor of order two. We will now generalke a theorem due to 
M e r  (1973) conceming quadratic constants of motion. 

is a quadratic constant of motion. 

Proof. With U := U, + U, we find 

We compute { H l ,  U-'] and {Hl, U,} explicitly, compare the results and find 

{HI, u-'}=-u-2{H,, U,}. (101 

The same relation is valid for Hz and U,. From 

we find together with (10) 

which inserted into the first equation yields-the desired result. 

The vectc: ua is an eigenuector and the l-form U, eigenfom of a sy"etriCtenso' Fg 

Tabub = hgabub and TdUb = hgabub. 

It is worth noticing that in pseudo-Riemannian spaces a symmetric tensor need 
diagonalized. 

X is said to be a tnuial separable coordinate for the HJ with m f 0 and KG bass& 
Yedor; HJ; WE) if and only if it is adapted to a Killing vector (confond al!@ 

generator of a homothety). ( x u )  is then a trivial separable system. X1 li=f$: 
orthogonal coordinate (with respect to the n - 1  coordinates b")) if g 
Eisenhart 1948). x1 is an orthogonal separable coordinate if it is Ortb 

sewable. (x") is then an orthogonal separable system. 

ogond 
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types of separable system 

t e N d o n  we derive the two basic types of separable systems for the HJ, KG and WE. 
w e m e  that none of the n - 1 coordinates (xu) is adapted to a (conformal),Killing 

we &$de the separation ansatz (3) for the HJ and (4) for the KG and WE (6) into 
m d e :  

") S(x")= k x 1 + S 2 ( x a )  with a real constant k (1 1) 

~ ( x " )  = exp(cx')X(x") with a complex constant c (12) 

S ( x " ) = S l ( x 1 ) + S 2 ( x u )  withSl(xl)# kx' (13) 

W") = @(xl )x (xL I )  with @(xl) #exp(cx)). (14) 

16) 

t J c  are arbitrary constants because S(x") and 'P(x") represent complete solutions 
Wtingwith respect to x'. 

Ck (a). We insert ansatz (1 1) into the HJ ( 5 )  and obtain 

g'" ga5 in2. 
k2+2k-a s +-a s a s --Ii=O 

g" a g'l a g 

h which we derive the separation condition dlgUb = 0 (and algd/gl' = 0 €or m = 0) 
remembering the definition of separation and using the fact that k is an arbitrary 
tonstant. So x' is trivial separable for the HJ. Conversely, if x1 is adapted to a 
b&"niorm Killing vector, ansatz (1 1) causes the (massless) HJ to separate with respect 
to Xi. 

With ansarz (12) we find €or the KG 

dobtain the necessary and sufficient condition dlgQb = 0 for separability of the KG 
arespect to x1 because c is an arbitrary constant and ,y and its derivatives are 
ndependent functions. n e  separability conditions for the WE are 

*means that a/axl generates a homothety. We collect the results in the following 
W t i o n .  

RDPosition 3- We choose ansatz (1 1) for the HJ and (12) for the KG and WE. x1 is a 
gparable coordinate for the HJ, KG and WE if and only if x' is a trivial separable 

'emayesib extend this last proposition to 

coordinate. 

There exist q ( O s q s n )  trivial separable coordinates (xu) with 
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The unique successful ansatz for the HJ is then 

S(X") = kuXu + S 2 ( x U )  

for the KG and WE 

!P(x") = exp(c,x")x(x") 

where k, are arbitrary real and c, arbitrary complex constants and v N R S  from q+ 1 to 
n. me most general transformation x Q  = x Q ( f b )  such that at least ?is again asep&,k 
coordinate for the transformed equations, is 

xu =AU( f l )+BU( f" )  

xu =B"(f") (1s) 
where A and B" are arbitrary non-vanishing functions. All separable systems related 
to trivial separable systems by transformation (15) are called, following Woodhouse 
(1975), type I1 separable. 

Case (b ) .  Ansatz (13) or (14) inserted into the HJ (5) or KG and WE (6) yields the term 
g'" &SI a& in the HJ or g'" al lnlQ,(a, lnlX( in the KG and WE where SI and 0, SzandX 
are functions of x1 and (x"), respectively. Therefore g'" = 0 is a necessary condition fix 
separability with respect to x1 and we obtain for the HJ (5).  

and for the KG (6) 

The massive HJ (16) separates with respect to x 1  if the second term depends onlyon(x") 
and the third term splits up into a sum of a function of x1 and a second function of (xu )  
equivalent with 

g'" = o  (18a) 

gaB alT=o 
g 

a, a,(g")-' = 0. 

(18b) 

(184 

These conditions prove also to be sufficient. For the massless HJ they reduceto(18a,*) 
17) because m = 0. In the case Of the KG (WE) we have to investigate two furthertem. ( 

dtbe separates with respect to x 1  if the first bracket depends on xl, the second Qn(x")m 
last term splits up into a sum of a function of x 1  and a second function ofb"). 

arabm a, x and their derivatives are independent functions, we obtain the sep 
conditions (181, dl 8Q(lnJg11ml) = 0 and al[(@gl1)-' a,(Gg"@)] = 0 where 
condition depends on the others. Therefore (18) and 

(I91 
81 a"(1nlg'"l) = 0 
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so that the KG separates with respect to x l .  (18) and (19) are also 
fie conditions reduce to (18a, b )  and (19) for the WE because m =O. 

x7) : = gaS(g1')-' and Was = ( W')-' and integrate (1 8c) to 

l/g" = UI(X')+ U*(X") (20) 

ds2 = (Ul(x l )  + U2(x"))[(dx')* + WPB(xy) dx" dxS J 

&&1mry functions U, and U,. Then (18) is equivalent with the form 

(21) 

dhmetric. In the case of the massless HJ, (18c) drops and we obtain 

ds2= U(~")[(dx')~+ WaB(xy) dx" dx'] 

&arbitrary U= U(x"). These two metrics are conformal to 

dr2=Y,bdx4 dxb=(dx1)2+ Wa,(xY)dxa dx'. 

Meconformal factor is written V, (19) is equivalent with 

n-2 
RI, =-al a,v. 4 v  

@proof for that equivalence is identical with that of theorem 3 if p = 0.) If (18c) is 
dandequivalent with (20), then V= Ul(x')+ U2(xa) and therefore RI, = 0. That 
Biwa 

Rcpdioa 4. None of the n - 1 coordinates (x") is adapted to a (conformal) Killing 
mr. x' is orthogonal separable 

(i) for the massive HJ if and only if the metric is conformal to (22) with the 
conformal factor (20); 

TU) for the massless HJ if and only if the metric is conformal to (22); 
@) for the KG if and only if (i) is valid and R I ,  = 0; 
(iv) for the WE if and only if (ii) is valid and R = ( n  - 2)(4 V)-' 8, a, V where V is 

the conformal factor and Rub the Ricci tensor of (22). 
&most general transformation x u  = x 4 ( Z b )  such 
$amformed equations is 

x'=A'(i') and x n  =B"(Z') 

pitbsbikary non-vanishing functions A' and B". 

that 2' is separable again for the 

(23) 

systems derived and constants of 

b'kn5. k t  x' be an orthogonal separable coordinate for the massive HJ or KG 
%leSsHJ or WE) and none of the coordinates (x") be adapted to a (conformal) Killing *- Then 

(g a quadratic (conformal) Killing tensor exists; 
@ the wordinate form of the separable coordinate is a closed eigenform of the 

(mnformal) Killing tensor. 
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fioofi we give first the proof for the massive equations. The Hamiltonian jycon, 
ponding to (21) is given by 

is a quadratic constant of motion because of proposition 2 and the Killing tensor 

KOb = (U1 + U*)-'( U1 W' d: Si -  U2 Sf 8:) 
generates K and fulfils, transvected with the closed form 86, 

KabSL=-U2(U1+UJ-l Sf-gabSk=(UI+U2)-l Sf. 
We find a similar proof for the massless equations. Hl is a quadratic constant of motion 
for yd. Therefore Hl defines a conformal constant of motion for &b (see corollary 1) 
generated by the conformal Killing tensor Q - S1 S1 such that ab- a b 

ab 1- b -  ab 1 -  Q Sb-81 g S b - U l S f .  

It is easy to realize that an orthogonal separable coordinate for the masslessequationsk 
also determined up to transformation (23). In particular, we find from the propositions 
3 and 5. 
Corollary 2. There are only orthogonal separable systems for the massive I-U and KG 
(massless HJ; WE) if (M, g) admits no isometry (conformal isometry; homothety). 

4. Separable systems 

We drop the assumption made in 0 3 that none of the n - 1 coordinates (x") is adapt4 
to a (conformal) Killing vector, in order to find all separable systems for the equatioa 
considered. Let p coordinates ( x ' )  with r, s = n - p  + 1, . . . , n be adapted 
ing Killing vectors (conformal Killing vectors; generators of homotheties) in themof 
the massive HJ and KG (massless HJ; WE) where p = 0,1,2, . . . . We know the unip 
ansafz for adapted coordinates and divide therefore the separation ansatz into: 

(a )  Ansafz (3) for the HJ takes the form 
(24) 

(2) 

S(x")= kx1+S2(x')+k,xr  

with arbitrary real constants k and k,; ansatz (4) for the KG and WE takes the 

Wx") = exp(cx')X(x') exp(c,xr) 

with arbitrary complex constants c and c, i, j ,  k run from 2 to n -P. 
(b )  Amart (3) for the HJ is 

(26) Sk")=Sl(x')+S2(x')+ k,xr with S1 # k x l  

with <p st exp(cx7. 

while amatz (4) €or the KG and WE is 
128 W") = Wxl)x(x') exp(c,xr) 
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(a). We insert (24) into the HI (5) and obtain 

wbs arg* = 0 (or d,(gab/g") = 0) because the coordinates (x') are adapted to com- 
mtins (conformal) Killing vectors. Therefore the massive (massless) HI separates with 

to x1 if and only if &gab = 0 (or al(gd/gl') = 0) since k and k, are arbitrary 
and x1 is adapted to a (conformal) Killing vector commuting with the given 

Killing vectors. Ansatz (25) inserted into the KG (6) yields 

h o s e  c and c, are arbitrary constants, the KG separates with respect to x1 if and only 
if = 0, and the WE (m = 0) if and only if 

al(gd/g") = 0 and a, al 1nlg1'l= 0. 

So we obtain for the equations considered one additional trivial seDarable coordinate if 
ansatz (24) or (25) is successful. (15) suggests that 

x 1 = A ' ( f 1 ) + B 1 ( Z U )  

x' = B'(2") (28) 
x r  = A ' ( f ' ) + B ' ( Y )  

isthe most general transformation such that i1 is again a separable coordinate for the 
transformed equations where A',  A' and B' are arbitrary functions. i' proves to be 
separable of type 11. For p = 0 the results agree with proposition 3. (281 implies 

f%~sitim26. All type I1 separable systems can be reduced to trivial separable systems. 

case (b Ansatz (26) or (27) inserted into the corresponding equations gives "" to the 
8'' dlS1 ajS? or g" a,@ aiX where S1, @ and S2,x  are functions of x or (x'). 

'Iherefore g"=O is a necessary condition for separability with respect to xl. Then we 
fmdthew 

*read?' =o (or a,(gab/g") = 0). Because k and k, are arbitrary constants and SI, S2 
and 9 are independent functions, the massive HI separates with respect 

d 
g" = 0 

aj(gl'/g") = 0; al(gij/g") = 0; al(gjr/gl*) =o (30) 
4 aj(g"/g") = 0; a l a j ( g  1 -0. 11 - 1 -  
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For the massless HT the last condition of (30) disappears because m=O. nese 
conditions are sufficient, too. 

For the KG we find with amatz (27) and g" = 0 

which splits up in the required form if and only if the coefficient of is a functionofx', 
the coefficient of ,y-l a function of ( x ' )  and the remaining term splits up into a sumof two 
terms depending on x1 and ( x i ) ,  respectively. Therefore we find (30) and additionally 

alaj lnlmg"l= o 131) 

to be necessary and sufficient conditions for separability of the KG with respect to XI. 

For the WE the last condition of (30) drops (m = 0). The transformation 

x" 

3 x r  = x r r  + (g"/g") dx' = $1; x i = x ~ i .  

changes the conditions (30), after dropping the dash, to 

(31) remains unchanged. We satisfy (32b, c and d) by 

Fi j (Xk) := g i j / g l l  

F j ' (xk)  := g"/g" 

F ; " ( x 1 ) + Z ( x k )  := grs/g" 

where the F are arbitrary functions. Integration of (32e) yields 

( g l y =  U1(X')+ V,(xk) (33) 

with arbitrary functions U, and U,. x is an orthogonal coordinate because Of (320)' 
Therefore we have 

7'h" 2. The coordinates (x ' )  are adapted to p commuting (conform 
vectors. x1 is an orthogonal separable coordinate for the massive (masless) 

all la .4  
ifd 
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onlgif&e metric takes the form 
a a  2 

+ 2Fj'(x a + (F;'(x ') + F;"(x ))- - axf ax' axr ax" (34) 

(i~hemnformal factor U =  ~ ( x ' ,  x')). 

f,&KG(WE), (32) implies the same metria but we have additionally to fulfil (3 1). 

wrem3. Let p coordinates (x') be adapted to commuting Killing vectors (generators 
dbmotheties). x1 is an orthogonal separable coordinate for the KG (WE) if and only if 
bmetric is conformal to 

a a  a a  - k a a  +-=- -+.F'l(x )- -j a x u a x b  ax' ax' ax' ax 

a a  a a  + 2F"(xk) - - + (F;"(x l )  + F;"( x k)) - - 
axf ax' ax' ax" (35) 

with the conformal factor Ill(x')+U2(x') (or U(xl, xi)), and R,,=O (or 
R,~=(~v)- ' (P-~)  a, a,v). 

bf. (34) is conformal to (35). The conformal factor is WX', xi> such that 
g"= V-'y&. Let f12 := 1 VI. The Ricci tensors R& of gab and Pd of yab are related by 

Rab = Pab + (n -2)fiv,Vbfl-1 - (U - 2)-'fl-"+2V~vd(fln-2)~cd~~~. 
Nth (32a) we find 

Rli  =Plj+(n-2)lnV,Vifl-'. 

b d V ,  are the Christoffel symbols and the covarant derivative of yob. The Rcci 
h o r  Of yab is given by 

P,, = -4 a, a, in/yl+aOr:,+$:, a, lnly( -r;,r:, 
*e? :=det yd. The explicit form of (35) implies that the second and third terms of 
Pl,vanish, that I':&,= 1/4 a, a, Inlyl and a, a,fl = VIVjfl. Therefore 

(36) 

ollis equivalent with a, a, I n J f l " - 2 m /  = 0 which leads to 

'last equation together with (36) yields 

Rti=0if(33) is valid. For p = 0 we obtain the results of proposition 4. 

OnbogonalseParable systems and constants of motion are related by 

Rlj=-$a,ai ln/yl+2(n-2)(al In(V(aj In]vl-$v-'a, 8 , ~ ) .  

a1 8, InlyJ = ( a  -2)(v-' a, a, v-a, In] VI a, In1 VI). 

R1j = (n -2)(4 V)-' a, a,V. 
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Theorem 4. In (M, g) there exists an orthogonal separable system for b e  
and KG (massless HT and WE). Then 

(i) a quadratic (conformal) Killing tensor exists; 
(i) h e  coordinate form of the separable coordinate is an eigenfomof &e 

mal) Killing tensor. 

fioof. k t  x1 be an orthogonal separable coordinate for the massive WJ or KG. fie 
metric takes the form (34) (see theorems 2,3)  and its Hamiltonian is given by 

is a quadratic constant of motion generated by the Killing tensor 

Contraction with the coordinate form Sfi yields 

If x1 is an orthogonal separable coordinate for the massless HJ or WE, HI is a quadratic 
constant of motion for (35). Therefore corollary 1 ensures that Qab = Sf 6!+- f ls :$  
is a conformal Killing tensor fulfilling Qab 8; = 8;- gab 8; = U-' 8;. 

Finally, we construct all separable systems which can be derived from an orthogod 
separable system. We give the most general transformation xa = xa(Zb) such that the 
transformed equations separate with respect to 2'. The ansatz used is (26) or(27). 
Therefore the transformation is restricted by 

- - -  - -  a, a,S(fa) = O or a, a, In @(fa) = o 
with S(2") = S(xb((aa)), 'fr(f") = q(xb(fa)) and?, = a/af", which ensures that Sorqis 
of the form (3) or (4). That leads to 

x " = A " ( ~ ' ) + B " ( ~ " )  with a,A' a,B'=O=a,A'a$. 
that If we investigate which combinations of vanishing factors are possible such 

det(8xa/8fb) # 0, we find either: (i) &A ' = 0 and alA' = 0, so that 

x1 = B ' ( i Q )  
x j  = B'(f") 

x r  =A'(f')+B'(f"); 
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- 0 and alAJ = 0, so that 
b@@'-- 

x' = A'(f') 
= B'(f") 

X' =A'(f')+B'(f"). 

137) 

mfnstm~i~formation is included by (28) such that 2' is a separable coordinate of type 
g, Transformation (37) is a product of the two transformations: 

x1 = A'(x") 

xi = fii(;I) (38) 

f=A'(x")+B'(x")+Cx" 

&functions A ', A' and fi', 8: such that det (ax"/aZ*) # 0, and a constant C # 0, and 
x'l= f' 
2' = ?(fa) (39) 
jy = 

nhere (i') are arbitrary functions of ( fa)  and det(aZi/af')#O. Then 
Btu") := iJ(?i(aa)) and B'(f") := I?(x"'(f")) + Cf'. In particular, we find gli = 0 and 
after joining the second transformation (39) 

wbere g'' = il' - gl' - g" # 0 and det(aZ'/aij) # 0. That is only to satisfy if 

Therefore the product of (38) with (39) is reduced to a transformation of the form (38). 
A separable system related by (38) to an orthogonal separable system is called 
sepora6le of type I. 

b J i h  7. All separable systems of type I can be reduced to orthogonal separable 
systems. 

"le Q n O t k d  metria admitting an orthogonal separable coordinate are given in the 
h m s  2 and 3 where p = 0,1,2, . . . . For p = 0 we find the results of proposition 5.  
(38) degenerates to (23). 

'* k d a o n s  and ha! results 

weehave investigated all possibilities concerning the ansutz for the HJ, KG and WE and 
bavefo~nd that two types of separable systems exist. Therefore we have extended 
wwoUeys theorem 4.1 for the HJ to the KG and WE: 

5 All separable systems for the HJ, KG and WE in (M, g)  are of fYPe I Or b e  , 
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n e  I separable systems are reducible to orthogonal separable system (proposi. 
tion 7) whose separable coordinate form is a closed eigenform of a (codom) Killlog 
tensor (theorem 4). The type I1 separable systems are reducible to 
systems associated with local (conformal) isometry groups (theorem 1). we found 
canonid metria admitting separable systems. 

Finally, we derive the sufficient condition concerning constants of motion for 

g emsten= of separable systems. Proposition 3 shows that the existence of a 
vector (conformal Killing vector; generator of a homothety) is sufficient for the 
existence of a trivial separable system for the massive HJ and KG (massless w~. 
secondly, we consider orthogonal separable systems. For the HJ we quote theorem4.2 
of Woodhouse (1975). 

Theorem 7. (M, g )  admits n - 1 quadratic (conformal) Killing tensors K"b 
associated functions Ksuch that: a 

(i) all K are linehy independent functions; 

(ii) {K, K ) = O ;  

(iii) if all K"6 have the common closed eigenform say dxl, then x1 is an orthogonal 

The proof is given in Woodhouse's paper. Theorem 2 ensures a choice of coordinates 
such that the metic agrees with (34). Because of theorem 3, x1 is also an orthogonal 
separable coordinate for the KG and WE if additional conditions for the Ricci tewrare 
fulfilled. 

a 

a B  

separgble coordinate for the massive (massless) HJ. 

Theorem 8. In (M, g) let p coordinates ( x " )  with r = n - p  + 1, . . . , n be adapted top 
commuting generators of local isometries (homotheties) and let n - 1 quadraticbnfor- 
mal) Killing tensors K"b exist with the associated functions K such that: 

a a 

all K are linearly independent functions; 
4 

all 
RljL 0 with j = 2, . . . , n - p  (or RI, = 
orthogonal separable coordinate for the KG (WE). 

have the common closed eigenform say dx'; 
- 2 )  a, a,(g")-'), then x' isan 

w e  illustrate some results by a non-trivial example: m e  Kerr-Newman Solutio* kin 
Boyer-Lindquist coordinates ( x u )  = (e, r, 4, t ) ,  given by 
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for the w. The Ricci tensor component Re of (40) vanishes such that the 
separate with respect to 0 because of theorem 3. It is wort; remarking that 
a d  WE are also separable in the Kerr coordinates (2") = (0, ?, & t'> because #ray KG 

tlaasformation 
d 0 = d i  

dr = df 

d$= -aA-'dr'+d& 

dt=  -(r2+u2)A-l dr'+di 

jsmctiyof the form (38) and d, fare again adapted to the commuting Killingvectors. 

[amgrateful to Professor Dr R Ebert and Dr R Riidiger for many valuable discussions. 
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