IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Separable coordinate systems for the Hamilton-Jacobi, Klein-Gordon and wave equations in

curved spaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9 519
(http://iopscience.iop.org/0305-4470/9/4/008)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:16

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

A Math. Gen., Vol. 9, No. 4, 1976. Printed in Great Britain. © 1976

ble coordinate systems for the Hamilton-Jacobi,
gein-Gordon and wave equations in curved spaces

Werner Dietz

Physikatisches Institut der Universitat, 8700 Wiirzburg, Réntgenring 8, Federal Republic
- of Germany
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Abstract. There are exactly two types of separable coordinates for the Hamilton-Jacobi,
Klein-Gordon and wave equations. One type can be reduced to separable coordinates
adapted to a (conformal) Killing vector, the other type to orthogonal coordinates adapted to
eigenvectors of a (conformal) Killing tensor. We derive a canonical form of the metric
tensor which is a necessary and sufficient condition for the existence of a separable
coordinate system for the Hamilton-Jacobi equation. For the Klein-Gordon equation the
metric is further restricted by a condition on the Ricci tensor. We give also sufficient
conditions for the existence of separable coordinates in terms of linear or quadratic
constants of motion.

L Introduction

Yy authors have studied coordinate systems in which the Hamilton-Jacobi equation
%arates completely. This problem was first investigated by Liouville and later by
Sickel (1890, 1891, 1893), Levi-Civita (1904), Dall’Aqua (1908, 1912) and Burgatti
(11). They gave metrics in which the Hamilton-Jacobi equation separates com-
pktely and found connexions between separable systems for the Hamilton-Jacobi
Ymation and the existence of constants of motion. Stickel was the first who pointed out
% quadratic constants of motion are related to orthogonal separable systems.
R"‘F"S‘)ﬂ (1927) and Eisenhart (1934) discussed the complete separability of the
rdon and wave equations in spaces admitting a complete set of mutually
¥ogonal families of hypersurfaces. They found the same results as Stickel for the
ton~Jacobi equation and additional conditions for the Ricci tensor. Havas (1975)
!!Veghe most general metric admitting coordinate systems in which the Hamilton-
and Schrodinger equations separate completely.
l;EWer motivation for relativists to investigate separation problems is the work
% Carter (1968) concerning the separability in some type {22} space-times, and
MWeeny ‘th‘e beautiful paper of Woodhouse (1975). He shows the relationship
e Ing tensors and separable systems for the Hamilton-Jacobi equation: there
entially two types of separable systems for the (massless) Hamilton-Jacobi
fa yd hose separable coordinate is adapted either to a (conformal) Killing vector
Jgenvector of a (conformal) Killing tensor. ‘
Ry, &aalier we extend Woodhouse’s results to the Klein—-Gordon (wave) equation
there are again only these two types of separable systems, such that the
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520 W Dietz

separable coordinate is again adapted either to a Killing vector (generator o
homothety) or to an eigenvector of a (conformal) Killing tensor. 2
We find canonical metric tensors and additional conditions for the corresponding
Ricci tensor in such a way that at least one separable coordinate exists.
Finally, we derive sufficient conditions for the existence of a separable system forthe
Klein-Gordon or wave equations in terms of constants of motion. .

2. Definitions and conventions

(M, g) is a smooth n dimensional Riemannian or pseudo-Riemannian manifold with 5
positive definite or Lorentz metric. A set of local coordinates is denoted by (x%).
Except where otherwise indicated, Latin indices a, b, ¢ run from 1 to n, Greek indices
a, B, v from 2 to n. The determinant of the covariant metric tensor is denoted by g. The
Hamilton—Jacobi equation (1) is given by

g% 8,83S-—m*=0 .
the Klein—Gordon equation (xG) by
. ~13,(V[glg®)
Plg® g, 8, W+ Y22 g Y om?=0 )
' "

which is called the wave equation (wE) if and only if m =0.
In the following we investigate the conditions for the existence of a coordinate
system (x*) in which the 51 or KG and WE separate with respect to x', that is to say the

ansatz
S(x*)=Si(x")+S,(x*) for § &)
or ‘
P(x*) = B(x)x(x) for ¥ @
inserted into (1) or (2) causes those equations, after multiplication with 2 suiiabk
function U= U(x®), to split up into a partial differential equation in x* for S;(x Jor
x(x*), and an ordinary differential equation in x* for S,(x") or ®(x"). A necessey
condition for the separability of the 1, kG and we with respect to x 15 thatg

coefficient Ug'! of 9,S; 4,5, or 8, d1x is a function of x! alone, say f’fx‘)-
transformation x* - £'(x") = [** £ /() dy gives, after dropping the bar, (8"#0)

U=(g")™"
and we obtain for (1) and (2) mulﬁplied by U
ab 2
g% m {5
Eﬁ BaS E),,S —'g'ﬁ = 0
and
ab ab 2 6)
vii,, ab‘F+‘P’1————a“(@§1 ) 8y ———=0. (
g Viglg g

menﬁoﬂed'

In the following, we assume that the transformation x * - %' (x), previously
is performed.



Separable coordinate systemsin curved spaces 521

()is 2 separable system for thelHJ, kG and we if the corresponding equation
. mtes with respect to x*. Wecall x" the separable coordinate. All considerations are
ﬁ,ﬂy!ocal in that the set of local solutions of the differential equations is not restricted
ientifications or boundary conditions. This enables us to consider S;, S, or ®, x and
jeir derivations as independent functions.

some definitions concerning Killing tensors and constants of motions are needed
(’,@eGeroéh 1970, Sommers 1973, Woodhouse 1975).

The Nijenhuis bracket operation is defined by

{A,B]al...ap...q...l = Ab(al ap_l’VbBap. ..a‘,_,_q_‘,l)_q‘Bib(a1 aq_IVbAaq.. - pger) (7)

sere A and B® € are symmetric contravariant tensor fields of order p and ¢q
repectively and V is any torsion-free connexion on (M, g).
We attach to each symmetric contravariant tensor field A "° a function
Al p.)= A% ""P,...ps On the covariant tangent bundle T*M where p® is the
tmgent on the curve x* = x*(s). The Poisson bracket of two functions on T*M is

b

dA 0B 4B 8A
, B}y =— ——— .
{4, B} op, 0x“ dp, 0x

{he Nijenhuis bracket and the Poisson bracket are closely relatea.

Poposition 1. Let A% " and B* " be symmetric contravariant tensor fields and
(“=[A, B]*"""“. Then the associated functions fulfil C={A, B}.

Thisis easy to prove by direct computation from (7). The symmetric tensor C* “isa
anformal Killing tensor if a tensor field B® **® exists such that

[C, g]a...d=B(a...bgcd).

Ynh proposition 1, we obtain {C, H}~ H where H =4g“p,p, denotes the Hamilto-
. If a symmetric tensor K ? satisfies

[K, g]a...d=0

ticalled a Killing tensor. Then {K, H}=0.

C""_’aa’y‘l. The metrics g, and 8., are conformal: g,, = Wg,,. K is a constant of
®ton with respect to £.. If H is the Hamiltonian of g,, then {K, H}~ H.

;"“f- I’he Hamiltonians H of g,, and ﬁ of 2,5 are related by H= WH. Therefore
=k Wi+ WK, H}={K, W} =W (K, W}H~ H.

Fiscalled conformal Killing vector if and only if
[é g]ab =fgab (8)

1 a

Va£°. If f = constant, £ generates a homothety. If f =0, £ defines a Killing

atwe choose the parameter ¢ on the integral curves (orbits) generated by £° as
% t1s adapted to the (conformal) Killing vector and we obtain

'ﬂif: n‘
o, If

ab

8
78 =0 (9a)
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if ¢° is a Killing vector, and

d aby _ . _ _3_

at(Vg )=0 with f= Py In|V] o
if £ is a conformal Killing vector. A quadratic (conformal) Killing tenser 52
(conformal) Killing tensor of order two. We will now generalize a theorem due to

Carter (1973) concerning quadratic constants of motion.

Proposition 2. (x®)=(x", x’, x") are local coordinates with i =1, ..., k; j= k+1,.. ]
r=k+I+A, ..., n and the Hamiltonian H takes the form ’

]

_1 Hl +H2
H=3 U,+U,
with U; = Uy(x'); U, = Uy(x’) and Hy = H,(x', p,, p,); H> = Hy(x’, p, p,). Then
=_1_ Ule— U2H1
2 U+U,

is a quadratic constant of motion.
Proof. With U = U, + U, we find
o H H H, H.
4{H, Ky = 3H,, U -, v+ v, 22
We compute {H;, U™ '} and {H;, U;} explicitly, compare the results and find
{H,, U'}=-U"{H,, U}. (10

The same relation is valid for H, and U,. From

H, &}_& n_H 1
BB Ly oy-Bagg, oy
we find together with (10)

H;, H. H. H

{‘El, 'ﬁz} = “Ug{Hn U1}+U;{H2, Uz}

which inserted into the first equation yields-the desired result.

The vector v* is an eigenvector and the 1-form v, eigenform of a symmetric tensor i
T,0° = Aguv” and T*v, = Ag*v,.

It is worth noticing that in pseudo-Riemannian spaces a symmetric tensor need notbe
diagonalized.

x" is said to be a trivial separable coordinate for the ry with m #0 and XG (massles
Hy; WE) if and only if it is adapted to a Killing vector (conformal Kll?“g ved:
generator of a homothety). (x®) is then a trivial separable system. X lfc_ 0 lst
orthogonal coordinate (with respect to the n—1 coordinates (x*)) if & = J and
Eisenhart 1948). x! is an orthogonal separable coordinate if it is orthogor
separable. (x*) is then an orthogonal separable system.
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1 Basic types of separable systems

- section we derive the two basic types of separable systems for the 11, KG and WE.

];:ﬁ:;ume that none of the n — 1 coordinates (x*) is adapted to a (conformal) Killing

wdor. We divide the separation ansatz (3) for the vy and (4) for the KG and we (6) into
00 lasses:
U

S(x%) = kx'+S5(x*) with a real constant k (11)
¥(x*) =explcx)x(x*) with a complex constant ¢ (12)
b
” S(x%) = Sy(x") + S5(x7) with S;(x!) # kx* (13)
P(x*) =D(x)x(x) with ®(x") # exp(cx?). (14)

{md ¢ are arBitrary constants because S(x*“) and W(x*) represent complete solutions
eparating with respect to x ™.

(ze (a). We insert ansatz (11) into the 1y (5) and obtain

la aff 2.
m

k2+2k% ac,sz+§—l—1 52355~ =0

fom which we derive the separation condition ;g% =0 (and 9;8*/g"' =0 for m=0)
rmembering the definition of separation and using the fact that k is an arbitrary
msunt, So x' is trivial separable for the m1. Conversely, if x' is adapted to a
(mnformal) Killing vector, ansatz (11) causes the (massless) Hi to separate with respect
wr.

Vith ansatz (12) we find for the KG

8 aglg™) g 3.(Vlglg"™ N\ m?
- 155 s 11_/] Jer15l6 N M 2
;(g”aaa,ﬁ e B,,+2cg“6a> +c(81 Injg" Vgl + e ) gll+¢: =0

ad obtain the necessary and sufficient condition 8,g = 0 for separability of the kG
wih respect to x because ¢ is an arbitrary constant and y and its derivatives are
Bependent functions. The separability conditions for the wE are

ab .
algﬁ=0 and 4,0, In|g""|=0
i {I;tans that 9/3x" generates a homothety. We collect the results in the following

on. .

5”1’05;':'% 3. We choose ansatz (11) for the ry and (12) for the kG and we. x'is a
. eteCOOrdmate for the ny, kG and we if and only if x' is a trivial separable

We m; :
% easily extend this last proposition to

Teoremy 5.

There exist g (0<g<n) trivial separable coordinates (x*) with
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u=1,...,q for the massive HJ and KG (massless H1; WE) if and only if the €00rdinare
(x*) are adapted to ¢ commuting Killing vectors (conformal Killing vectors; generators

of homotheties). |
The unique successful ansatz for the Hy is then

S(x%)=k,x"+8,(x")
for the kG and WE
V(x®) =explc.x“)x{(x")

where k, are arbitrary real and ¢, arbitrary complex constants and v runs from g+l
n. The most general transformation x* = x“(£°) such that at least £ is againa separable
coordinate for the transformed equations, is

x* =A%) +B*“(¥%)
X V= B’ (x- a) ( 1 5)
where A* and B* are arbitrary non-vanishing functions. All separable systems related

to trivial separable systems by transformation (15) are called, following Woodhouse
(1975), type II separable.

Case (b). Ansatz (13) or (14) inserted into the 1y (5) or kG and WE (6) yields the term
2" 3,S: 8,S, in the Hy or g'* 8, In|®[3,, In|y| in the kG and WE where S, and ®, S, and
are functions of x ' and (x*), respectively. Therefore g'* = 0 is a necessary condition for
separability with respect to x’ and we obtain for the uy (5).

af 2
6131»61514'% aa528352_mﬂ'=0 (16}
4 g
and for the xG (6)
1 1/g" 55(°Vgl) m’
—[8, 9, +61(ln|g“~/i_§||) 9,1 +—<— 8o O +———— aa) x———=0. (17
d ¥ g11 g“*/@ 811

The massive 1y (16) separates with respect to x ' if the second term depends onlyon (X:)
and the third term splits up into a sum of a function of x" and a second function of ('}

equivalent with
(18a)

gla = 0
aB
31'§T= 0 {18)
(18¢)

3. 0:(g") ' =0.

These conditions prove also to be sufficient. For the massless 1 they reduce to (182 b)
because m =0. In the case of the kG (WE) we have to investigate two further tearrns- (me
separates with respect to x ' if the first bracket depends on x, the second on (x7)and

last term splits up into a sum of a function of x* and a second function of (x")- Be;aﬂ!li
&, x and their derivatives are independent functions, we obtain the separd st
conditions (18), 3; 8, (Injg"'V|g])) = 0 and 3,[(v]g]g"") ™ 9, (~]g|g**)] = 0 where the

condition depends on the others. Therefore (18) and

19
81 3.(Injg"'Vigl) =0 (
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g gecessary SO that the KG separates with respect to x'. (18) and (19) are also
“eent The conditions reduce to (18q, b) and (19) for the we because m=0.

W)= g”®(g"")™" and W,g =(W=*)"" and integrate (18¢) to
1/g" = Up(x")+ Ua(x®) (20)

ghaitrary functions U, and U,. Then (18) is equivalent with the form
ds?= (U (x") + Up(x*N[(dx ") + Wog(x") dx* dx*] (21)

dtemetric. In the case of the massless Hy, (18c¢) drops and we -obtain
ds®= U®)[(dx')*+ W,g(x”) dx* dx?]

gharbittary U= U(x*). These two metrics are conformal to

Ao = 75 dx® dx® = (dx")* + W,(x”) dx* dx”. (22)

Htie conformal factor is written V, (19) is equivalent with

n—2
RIQ=W61 aa‘/.

e proof for that equivalence is identical with that of theorem 3 if p =0.) If (18¢) is
wid and equivalent with (20), then V = U;(x")+ U,(x*) and therefore R, =0. That
e

Popesition 4. None of the n —1 coordinates (x*) is adapted to a (conformal) Killing
wr. x' is orthogonal separable
i) for the massive ny if and only if the metric is conformal to (22) with the
_ conformal factor (20);
li) for the massless 1 if and only if the metric is conformal to (22);
({li) for the kG if and only if (i) is valid and R,, =0;
(i) for the we if and only if (ii) is valid and R, = (n—2)(4 V)™ 8, 8,V where Vis
the conformal factor and R,, the Ricci tensor of (22).

Temost general transformation x® = x*(%*) such that ' is separable again for the
Taormed equations is

=AYz  and x*=B*FE") (23)

W arbitrary non-vanishing functions A’ and B*.

hﬁm“."e{%n between the orthogonal separable systems derived and constants of
1S given by

P 3. Let x* be an orthogonal separable coordinate for the massive HJ or KG

%558 Hior we) and none of the coordinates (x*) be adapted to a (conformal) Killing

en
ég ahquadratic (conformal) Killing tensor exists;

z © Coordinate form of the separable coordinate is a closed eigenform of the
onformal) Killing tensor.
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Proof. We give first the proof for the massive equations. The Hamiltoniap H corres.
ponding to (21) is given by
1H,+H
with H; = (p,)* and H, = W**(x?) p,ps such that
_1UH,~U,H,
2 U+
is a quadratic constant of motion because of proposition 2 and the Killing tensor
K®=(U+U) (U, WP d2 65— U, 61 87)
generétes K and fulfils, transvected with the closed form 8.,
K® 8, ==Uy(Uy+ Uy 7' 85~ g® 8, =(U,+ Uy~ 8¢,

We find a similar proof for the massless equations. H, is a quadratic constant of motion
for y.. Therefore H, defines a conformal constant of motion for g,, (see corollary 1)
generated by the conformal Killing tensor Q%= &8¢ 6'{ such that

Q¥ 8, =81~g*8,=U" 6%

K

Itis easy to realize that an orthogonal separable coordinate for the massless equationsis
also determined up to transformation (23). In particular, we find from the propositions
3and5.

Corollary 2. There are only orthogonal separable systems for the massive 1 and kG
(massless 1y; WE) if (M, g) admits no isometry (conformal isometry; homothety).

4. Separable systems

We drop the assumption made in § 3 that none of the n —1 coordinates (x*) is adapted
to a (conformat) Killing vector, in order to find all separable systems for the equations
considered. Let p coordinates (x") withr, s=n—p+1, ..., n be adapted to pcommut-
ing Killing vectors (conformal Killing vectors; generators of homotheties) in the case of
the massive HJ and KG (massless 1y; WE) where p=0, 1,2, .... We know tpe unique
ansatz for adapted coordinates and divide therefore the separation ansaiz into:

(a) Ansatz (3) for the uy takes the form

S(x®) =kx'+S,(x)+ k.x"
with arbitrary real constants k and k,; ansatz (4) for the kG and W takes the form

(o4

¥(x*) = exp(cxx(+) expl(c,x” ®
with arbitrary complex constants ¢ and c,. i, j, k run from 2 to n—p.
(b) Ansatz (3) for the 1y is _
Sx%)=S1(x") +S,(x") + kx" with Sy # kx' o
while ansatz (4) for the xG and wEg is o

W(x*)=B(x")x(x) exp(cx)  with P explcx).
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Cast (a). We insert (24) into the Hy (5) and obtain
] g" gy g" g m o,
;gﬁal-sz 6j52+2<gﬁ k, +?k 8j32+'§ﬁk,ks +2?fkk, —F+k =0

shere 3% =0 (or 3,(g*/g'") =0) because the coordinates (x") are adapted to com-
muting (conformal) Killing vectors. Therefore the massive (massless) Hy separates with
respect to x” if and only if 3, g* =0 (or 3,(g*/g'")=0) since k and k, are arbitrary
constants, and x! is adapted to a (conformal) Killing vector commuting with the given
(conformal) Killing vectors. Ansatz (25) inserted into the G (6) yields

(gj' g” )8j+31(81j@)+3i(gij@)ai]x

¢ +—=C
g“ i g11 gu\/@

i
1[.g_a.. 8 +2
X

gll

s ir

g m -
+'ég1—1 C,Cs +2?CC,—?T+ c?

a,-(g"'@)ﬂ (al<g"J|'£|)+a,~<g“fla))
gn\/@ r gu\/|'g_' gn@

Because ¢ and ¢, are arbitrary constants, the KG separates with respect to x ' if and only
3,3 =0, and the we (m =0) if and only if

3(g*/g'")=0 and 4,4, Inlg"|=0.

+c(él(ln [gllJE]) +

Sowe obtain for the equations considered one additional trivial separable coordinate if
ansatz (24) or (25) is successful. (15) suggests that
x'=A'@)+BY(z%)
x' = B/(%%) (28)
xX'=A"(%")+B'(x%)
s the most general transformation such that &' is again a separable coordinate for the

transformed equations where A', A" and B” are arbitrary functions. %' proves to be
sparable of type II. For p =0 the results agree with proposition 3. (28) implies

Proposition 6. All type Il separable systems can be reduced to trivial séparable systems.

g‘“e (b)x}- Ansatz (26) or (27) inserted into the corresponding equations gives rise to the
TS g 6,51 95, or gV 8,® d;x where S;, ® and S,,x are functions of x* or (x').

1 : . o .
ﬁndrg:re 8" =0is a necessary condition for separability with respect to x*. Then we
H

1r i .
(a S )2+ g‘ gu gjr grs m2
pehs LT + 1108, 08,42k OS2k~ =0 (29)
ab
§ =0 (ora,(g**/g'") = 0). Because k and k, are arbitrary constants and Sy, S,
r derivatives are independent functions, the massive Hy separates with respect

Where 9,
and the;
toy! if
gi=0
3(g"/g'y =0, a(g"/g*)=0; a(g"/g'H)=0 (30)
%9(8"/g")=0;  a,8(g")"=0.
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For the massless. 1y the last condition of (30) disappears because m =, These

-conditions are sufficient, too. '
For the kG we find with ansatz (27) and g/ =0

1 g" 1/g" g’ az(\/n i
(3, 8,+2%7¢,8,+98, Inp|glg'Y| 8 )cb +—(——aia.+2— 5, +AVigle") )
q)(al 1 gu 119 InlVglg™| 8, X g»” ; g“C i \/@g” 3y

g’ 8,(lalg™) +a,(Vlglg")_m* _
FEHGO TG Jalglt 1
g lele g
which splits up in the required form if and only if the coefficient of @' isa function ofx’,

the coefficient of x ~ a function of (x’) and the remaining term splits up into asum of two
terms dependingon x* and (x'), respectively. Therefore we find (30) and additionally

0

8,9, InV]glg"| =0 61)

to be necessary and sufficient conditions for separability of the kG with respectto x',
For the wE the last condition of (30) drops (m =0). The transformation

x'1
1 . .
x1=xl ; xj=xu; xr=x:r+J (glr/gll)dxl

changes the conditions (30), after dropping the dash, to

g'*=0 (32a)
0:(g"/g')=0 (326)
3:(g"/g"")=0 (32)
3:9:(g"/2'")=0 (324)
3 3;(g") ™ =0. (32)

(31) remains unchanged. We satisfy (325, ¢ and d) by

Fi(e*) = g/g™
Fr(x*)=g"/g"
Fi(x")+F3(x") = g"/g"

where the F are arbitrary functions. Integration of (32¢) yields

() = Uy(x )+ U(x¥) e

with arbitrary functions U, and U,. x" is an orthogonal coordinate because of (320)
Therefore we have

Theorem 2. The coordinates (x") are adapted to p commuting (conformal) %
vectors. x' is an orthogonal separable coordinate for the massive (massless) B
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oayif the metric takes the form

-+ U [(a) cpih L

2N T (FH + ) o o (4

(with the conformal factor U= U(x", x’)).
Firthe G (WE), (32) implies the same metrics but we have additionally to fulfil (31).
Therem 3. Let p coordmates (x") be adapted to commuting Killing vectors (generators

ohomotheties). x' is an orthogonal separable coordinate for the KG (wg) if and only if
the metric is conformal to

08 8 _ 8 8 ok 9 9
Ta b ox'ox’ Fi( )Bx' ax’
+2F( N+ F3(x (35)

vih the conformal factor Ul(x1)+ Uy(x') (or U(xy,x;)), and Ry;=0 (or
Rli=(4U)—l(n —-2)a,9;U).

Poof. (34) is conformal to (35). The conformal factor is V{(x', x’) such that
{*=V"'y®. LetQ” := | V|. The Ricci tensors Ry, of g** and P,, of y* are related by

Rup = Pop +(n=2)QV,V, 07 - (n - 2)7 Q7" V, V(" ) vy,
With (32a) we firid
=P +(n-2)Qv,V,Q7.

Tiand V, are the Christoffel symbols and the covarant derivative of ¥**. The Ricci
kot of v is given by

Py=-30,8; In|y|+8,I%+iT% 8, In|y| -T& T,

;h“e ¥:=det y,;. The explicit form of (35) implies that the second and third terms of
b vanish, that I'7,17, = 1/4 4, ; In}y| and 8, 3, =V, V,(2. Therefore

Ri;=-30,8; Inly|+3(n—2)(3, In|V| 8, In|V|-3V 18, 4,V). (36)
Bisequivalent with 3; 8; InjQ"*]y||=0 which leads to
9:9; Iny|=(n—2)(V™' 8,8,V ~3, In| V] §; In| V).
Telat ®quation together with (36) yields
Riy=(n-2)av)™s,4,V.

R;=
i=0f (33) is valid. For p =0 we obtain the results of proposition 4.

Onho
Sonal separable systems and constants of motion are related by
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Theorem 4. In (M, g) there exists an orthogonal separable system for the Mmassive gy
and KG (massless 1y and wg). Then
(i) a quadratic (conformal) Killing tensor exists; ‘
(i) the coordinate form of the separable coordinate is an eigenform of the {confor-
mal) Killing tensor.

" Proof. Let x' be an orthogonal separable coordinate for the massive gy or KG. The
metric takes the form (34) (see theorems 2, 3) and its Hamiltonian is given by

_1H+H,
22U+,

with H, = (p,)*+ Fr(x")p,p, and H, == F"(x*)pip; + 2F" (x*)pp, + F5(x*)p,p, such that
(proposition 3)
— _]; UIHZ - UzH 1

K 2 U+U,

is a quadratic constant of motion generated by the Killing tensor

L9

7 (F7 6% &)+2F" 87 60+ F5 6¢ 63)—%3(3?6$+F;‘5:5§).

K*=

Contraction with the coordinate form 8. yields

K®68;= —%3 8i~g®6,=U"" 8%

If x" is an orthogonal separable coordinate for the massless By or WE, H is a quadrgﬁc
constant of motion for (35). Therefore corollary 1 ensures that Q% =8 61+F§; &
is a conformal Killing tensor fulfilling Q* &, = 8{~ g® 6, = U™ &}.

Finally, we construct all separable systems which can be derived from an orthogondl
separable system. We give the most general transformation x* = x*(%") such that the
transformed equations separate with respect to %'. The ansatz used is (26) or 27
Therefore the transformation is restricted by

9,9.8(x%)=0 or 39,8, In¥(F)=0

with §(£%) = S(x*(£%)), ¥(%*) = ¥(x*(£*)) and 3, = /%", which ensures that Sor ¥
of the form (3) or (4). That leads to

X*=A(E)+B(E7)  with  5,A'3,B'=0=34"dB"
If we investigate which combinations of vanishing factors are possible such (b
det(9x°/ax®) # 0, we find either: (i) 3, A’ =0 and 3, A’ =0, so that

x'=BYx%)

‘x' =Bi(%%)
x"=A"(Z)+B(x%);
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¢{ﬁ)a,B‘ =0 and 8, A’ =0, so that
xl = Al(x—l)
¥'=B(E) (37
x'=A'()+B(x%).

Thefirst transformation is included by (28) such that %' is a separable coordinate of type
L Transformation (37) is a product of the two transformations:

x=AE"
¥ =Bi(#) (38)
X =A"F)+B(F)+Ci

yihfunctions A', A’ and B’, B", such that det (3x°/6%®) # 0, and a constant C # 0, and

1 1

il=x
F=%(x") (39)
~r=x—r

vhere () are arbitrary functions of (%) and det(9x'/0%’)#0. Then
BE°) = B'(#(¥*)) and B"(£%) = B’(¥/(x*))+ C¥’. In particular, we find "/ =0 and
aiter joining the second transformation (39)

0% ax’
gt

=1r
—r—

w8 ax
where 37 =" ~ 5"~ g'! # 0 and det(85'/a%’) # 0. That is only to satisfy if

OF _ o i it
af,—0<—>x = (x%).
Therefore the product of (38) with (39) is reduced to a transformation of the form (38).

A separable system related by (38) to an orthogonal separable system is called
separable of type I.

xtiosition 7. All separable systems of type I can be reduced to orthogonal separable
ms.

& tanonical metrics admitting an orthogonal separable coordinate are given in the
"ems 2and 3 where p=0, 1,2, ... For p=0 we find the results of proposition 5.
() degenerates to (23).

5. Conclusions and final resuits

Wehave inyegt;

Ny gated all possibilities concerning the ansatz for the vy, kG and wE and

, md{;ﬂnd fhat two types of separable systems exist. Therefore we have extended
Ouse’s theorem 4.1 for the Hy to the kG and WE:

Thesre, 5.

el

All separable systems for the HJ, KG and WE in (M, g) are of type I or
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The type I separable systems are reducible to orthogonal separable systems (proposi.
tion 7) whose separable coordinate form is a closed eigenform of a (conformal) K
tensor (theorem 4). The type II separable systems are reducible to trivig] separabje
systems associated with local (conformal) isometry groups (theorem 1). We found
canonical metrics admitting separable systems. ‘

Finally, we derive the sufficient condition concerning constants of motion for the
existence of separable systems. Proposition 3 shows that the existence of 3 Killing
vector (conformal Killing vector; generator of a homothety) is sufficient for the
existence of a trivial separable system for the massive HJ and KG (massless 1y; wg),
Secondly, we consider orthogonal separable systems. For the Hy we quote theorem 42

of Woodhouse (1975).

Theorem 7. (M, g) admits n—1 quadratic (conformal) Killing tensors X® with the
associated functions K 'such that: °
(i) all K are linearly independent functions;

(i) {K, K}=0;

(iff) if all K" have the common closed eigenform say dx’, then x” is an orthogona
separable coordinate for the massive (massless) Hy.

The proof is given in Woodhouse’s paper. Theorem 2 ensures a choice of coordinates
such that the metric agrees with (34). Because of theorem 3, x' is also an orthogonal
separable coordinate for the kG and we if additional conditions for the Ricci tensor are

fulfilled.

Theorem 8. In (M, g) let p coordinates (x") with r=n—p+1,..., n be adapted top
commuting generators of local isometries (homotheties) and let n — 1 quadratic (confor-
mal) Killing tensors K* exist with the associated functions K such that:

(i) all K are linearly independent functions;
(i) {K, Ié} =0;
(iii) all K* have the common closed eigenform say dx;

(iv) Ry;=0withj=2,...,n—p (or Ry;=1/4g"(n-2) 4, 3,(g")™"), then x'isan
orthogonal separable coordinate for the kG (WE).

We illustrate some results by a non-trivial example: The Kerr-Newman solution is, it
Boyer-Lindquist coordinates (x*) = (6, r, ¢, 1), given by

2

(%)2=(’2+02 00520)‘1[%)2%(5%):(sin-20~%) <5%>2

rP+a®\ o 3 (5, . (r2+a2)2)(6>2] (40
+2a(1— A )-C_)—(ga—t-i-(a sin 0——-—A—— ot

where A=A(r) := P~ 2mr+a2+e® and m, g, e are constants. ¢ and t are 2cflzrpwd
to two commuting Killing vectors and are therefore trivial separable cOOfdl"at,e) "y
HI, KG and we. We compare with theorem 2: x' =6, x*=r (j=1,2) and (x

where r=3, 4. So (40) takes the canonical form (34) and @ is an orthogonal ¢
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pordinate for the 13. The Ricci tensor component Ry, of (40) vanishes such that the
* - and WE separate with respect to 6 because of theorem 3. It is worth remarking that
';:H, kG and wE are also separable in the Kerr coordinates (£*) = (6, 7, ¢, t) because

pe transformation
‘dg=de
dr=dr
dé = —aA™' dF+dé
dt=—("+a)A™" dF +df
" sexactly of the form (38) and &, t are again adapted to the commuting Killing vectors.
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